UADE 2.xx design specification

Heikki Orsila <heikki.orsila@iki.fi>

1 Introduction

UADE (Uniz Amiga Delitracker Emulator) plays various Amiga music formats
by hardware and software emulation. Approximately 200 formats are known to
work more or less properly.

Despite considerable performance requirements of emulating hardware and soft-
ware, UADE requires only approximately 5% CPU resources with a current
(2006-01-01) computer system (2.0 GHz AMDG64).

The full system consists of 4 layers shown in Figure ??. The frontend layer
handles all user-interface and high-level control issues. The frontend relays
user-induced commands for the emulator. The emulator is programmed to em-
ulate a reduced Amiga 500 model and load boot software and data for it. The
Amiga model is called reduced because it lacks functionality of some peripheral
devices and custom graphics chips. It only needs to run MC68000 software to
produce sound through Amigas audio chip. The loaded software consists of 2
two components, which are the sound core (score) and some eagleplayer plu-
gin. The loaded data is a song to be played by the eagleplayer plugin. The
emulated machine is booted after this. Boot procedure starts execution from
the score, which initializes emulated hardware and setups an environment that
contains some essential features from AmigaOS and Eagleplayer APIs. The
score executes the eagleplayer plugin to play the music with the data that was
loaded. The eagleplayer plugin can load additional data files from the native
host operating system if required.

This document explains internal issues between the frontend and the emulator.
Interaction between the emulated and native software is not documented.

2 History

UADE 1.xx (2000-04-09) was written to be a stand-alone program without con-
sideration to implementing many different user interfaces (frontends) for it.
There was no internal structure to implement different frontends easily, which
became rapidly a big problem because users requested many different kinds

Frontend

Emulator (uadecore)
Native code

Emulated code
Sound Core (score)

Eagleplayer plugins

Figure 1: UADE software layers

of interfaces. By much hacking some kind of pseudo-interface was created to
facilitate following frontends:

e Beep Media Player

e MorphOS shell without interaction
e Unix shell without interaction

e Unix shell with small interaction

e XMMS plugin

To force the separation of user interface and effective functionality, UADE
2.00 (2006-01-01) removed all the user interface code from the emulator part
(uadecore).

3 Message-passing protocol

In UADE 2.xx the emulator (uadecore) became an independent process without
any user interfaces. Any frontend, or client, that wants to use its services
must communicate with the uadecore by using a token-passing based messaging

protocol. The protocol is of course implemented by interprocess communication
(IPC).

The basic idea of the protocol is that the frontend is the client who issues
commands for the server (uadecore). Uadecore may not send any commands at
all. Uadecore only sends replies to commands issued by the client. Also, the
client never replies anything back to the uadecore.

The communication protocol is based on the concept of tokens. Only the party
that has a token (there is only one) may send messages. Messages are either
commands or replies. Client sends messages and uadecore sends replies. Both

of them have to send the token back sometimes. The party that doesn’t have
the token must reply to all commands sent by the other party.

Initially the client has the token so it may send commands for the uadecore.

3.1 Messaging protocol commands

The messaging protocol has following commands which are only sent by the
client. There is an exception, however. The uadecore may send a token-
command, but it is not really considered a command. All the commands can
be found from the file src/include/uadeipc.h.

Config command is used to pass a file name of the emulation configuration file
for the uadecore. The file is named uaerc.

Score command is used to pass file name of a binary run-time in M68k ma-
chine language for the uadecore. The binary run-time is called score or
sound core. The sound core contains implementations of Fagleplayer and
AmigaOS APIs.

Player command is used to pass a file name of a binary player plugin in M68k
machine language for the uadecore. This is also called an Fagleplayer
plugin.

Module command is used to pass a file name of a song to be played for the
uadecore.

Read command is used to request more sound data from the uadecore.
Reboot command is used to halt playback synthesis of uadecore.

Set subsong command is used to set the initial subsong for playback.
Ignore check command is not necessary (will be documented later, if ever).
Song end not possible command is not necessary.

Set ntsc command is not necessary.

Filter command is used to select between A500, A1200 or no filter emulation.
Set frequency command is used to set sample rate for output.

Set resampling mode command is not necessary.

Speed hack command is not necessary.

Change subsong command is not necessary.

Activate debugger command is not necessary.

Token command is used to pass back the token for the other party.

3.2 Messaging protocol replies for commands

Messages are answered by following replies. All the replies can be found from
the file src/include/uadeipc.h.

MSG reply is just any random text string message that the client should know.
Could be spam, blackmailing, empty threats or last words of a dying
process.

Can’t play reply is issued by the uadecore if it is not able to play a given
triplet of score, player and module.

Can play reply is issued by the uadecore if it can play a given triplet of score,
player and module.

Song end reply is issued by the uadecore to indicate that playback has ended.

Subsong info is issued by the uadecore when it knows the amount of subsongs
contained in the song. This happens a short while after playback has
started, or usually during the first fraction of a second since playback has
been started.

Player name is a reply containing the human (geek?) readable player name
that is decoded by the eagleplayer plugin,

Module name is a reply containing the human readable form of the module
name decoded by the eagleplayer plugin.

Format name is a reply containing the human readable form of the song for-
mat that is being played.

Data reply is issued by the uadecore to pass synthesized sample data back to
the client. This is a reply for the read-command.

3.3 Message format

All messages are sent as finite sized byte sequences. Each message begins with
a header shown in Table 7?7. msgtype field is simply an unsigned 32-bit integer
in a packed binary structure. The integer is sent in network byte-order aka
big-endian format. All integers are sent in big-endian format. The size field
is 32-bit length of the bytes coming after the header (which is in big-endian
format). Notice the use of C99 empty record in a structure (excuse the annoying
GCC feature there that forces the structure to be tightly packed) called data.
data has zero size and thus the whole message size in memory is 8 + size bytes.
The full size must not be over 4096 bytes, and thus size can be at most 4088.

Table 1: Messages header
uint32_t | msgtype (big-endian)
uint32_t | size (big-endian)
uint8_t[] | data

Table 2: Short message
uint32_t | msgtype
uint32.t | 0

There are 3 types of messages: short messages, string messages and custom
messages. Each follow the given low-level format but the contents differs.

Messages C language definition is:

struct uade_msg {
uint32_t msgtype;
uint32_t size;
uint8_t datal];

} __attribute__((packed));

3.3.1 Short message

Short message has the value 0 in size field implying that there is no special
payload with the message. Sending a token, for example, is such a message.
Short messages are sent with uade_send_short_message and received with
uade_receive_short_message. The structure of short message is shown in
Table ?7?7. Table 7?7 shows all short messages.

Table 3: Short messages
Command | Activate debugger
Command | Ignore check
Command | Reboot
Command | Song end not possible
Command | Speed hack
Command | Token

Reply | Can play
Reply | Can’t play

Table 4: String message
uint32_t | msgtype
uint32_t | x + 1, where x is the number of letters.
uint8_t[] | z + 1 bytes.

Table 5: String messages
Command | Config
Command | Module
Command | Player
Command | Score
Command | Set resampling mode
Reply | Format name
Reply | Module name
Reply | MSG
Reply | Player name

3.3.2 String message

String message is a message containing one zero-terminated text string. A string
message is sent by uade_send_string and received by uade_receive_string.
Table 7?7 shows the structure of a string message. Table 7?7 shows all string
messages.

3.3.3 Custom message

Custom message is any kind of message which is not short or string message.
We quickly present all different custom messages in following tables.

Table 7?7 shows format of sound data reply. Table 7?7 shows format of subsong
info reply. Table 7?7 shows format of song end reply. Table 7?7 shows format
of read command. Table ?? shows format of filter command. Table ?? shows
format of set frequency command. Table 7?7 shows format of subsong commands
which are set subsong and change subsong.

Table 6: Data reply message
uint32_t | Reply: Data
uint32_t | x, where x is the number of sample data bytes.
uint8_t[] | = sample data bytes. The format is 16-bit interleaved
PCM stereo (big-endian).

Table 7: Subsong info reply message
uint32_t | Reply: Subsong info
uint32_t | 12
uint32_t | Minimum subsong (big-endian)
uint32_t | Maximum subsong (big-endian)
uint32_t | Current subsong (big-endian)

Table 8: Song end reply message

uint32_t | Reply: Song end
uint32_t | 8 + = + 1, where x is length of an explanation string.
uint32_t | Number of bytes of sample data valid in the next data reply (big-endian)
uint32_t | Unintentional end: 0 or 1. 0 means unintentional.
1 means an error resulted into the song end. (big-endian)
uint8_t[] | z + 1 bytes containing a textual reason for song end.

Table 9: Read command

uint32_t | Command: Read

uint32_t | 4

uint32_t | Number of bytes of sample data to be read (big-endian)

Table 10: Filter command

uint32_t | Command: Filter

uint32_t | 8

uint32_t | Filter type. See src/include/amigafilter.h for values (big-endian).
uint32_t | 2z + y, where x means whether or not filter state should be forced

and y is filter state to be set. Both and y are either 0 or 1. (big-endian)

Table 11: Frequency command
uint32_t | Command: Set frequency
uint32_t | 4
uint32_t | Sample rate (big-endian)

Table 12: Subsong command

uint32_t | Command: change subsong or set subsong

uint32_t | 4

uint32_t | New subsong number (big-endian).

4 Interaction example

To illustrate the dialog between client and server, look at the following log
between uadel23 and uadecore:

<This is done once during client startup>
uadel123: sending string 1 (command: config)

<Here begins play back of new song. this is done for each song.>
sending string 2 (command: score)

sending string 3 (command: player)

sending string 4 (command: module)

sending message 16 (token pass)

uadel23:
uadel23:
uadel23:
uadel23:

<Now the

uadecore

is pondering whether or not the thing can be played>

uadecore: sending message 19 (reply: can play)
uadecore: sending message 16 (token pass back)

<It’s okay to play, so send some additional commands for uadecore>
uadel123: sending message 11 (command: filter. not needed.)
uadel23: sending string 12 (command: interpolation. not needed.)

<Then start audio synthesis by issuing read command>
uadel23: sending message 5 (command: read)
uadel123: sending message 16 (token pass)

<uadecore starts to synthesize and floods back messages>

uadecore:
uadecore:
uadecore:
uadecore:
uadecore:
uadecore:
uadecore:
uadecore:

sending
sending
sending
sending
sending
sending
sending
sending

string 17 (reply: message. don’t care.)

string 22 (reply: player name back. don’t care.)

string 23 (reply: module name back. don’t care.)

message 21 (reply: subsong info)

string 17 (reply: birthday congratulation message)

message 25 (reply: data)

message 25 (reply: data)

message 16 (token back as all the requested data has been sent)

<Okay, the first round of messages was good. Next read then..>
uadel23: sending message 5 (command: read. 2nd one actually.)
uadel123: sending message 16 (token pass)

uadecore: sending message 25 (reply: data)

uadecore: sending message 25 (replay: data)

Based on that log and previous explanation of messages, you should be able
to write an independent frontend by doing little reverse-engineering into uade
headers. More specifically, you need following information:

e Message type numbers (see src/include/uadeipc.h)
e Filter setting codes (see src/include/amigafilter.h)

e something else you will find out..

Figure 77 shows play loop interaction from client perspective. That is, song
initialization has already happened which means that uadecore configuration,
score, player and module names and other options have been sent already.

5 Portability considerations

Language requirements:

e Limited C99 compiler that has:

— Anonymous initializers for structures: struct foo bar = (struct foo) {.x = y};

— Portable integer types from stdint.h.
Architecture specific parts that need to be implemented:

e User-interface (frontend)

e [PC between a frontend and the emulator may have to implemented. The
unixipc.c module implements the IPC for UNIX systems. The interface for
IPC is generic and an implementation must follow ipcsupport.h headers.
However, the interface can be changed if it causes too much problems for
some system.

Other issues:

e File modes of C fopen() calls. Windows systems have binary and non-
binary modes which is different to UNIX systems. UNIX systems only
have the binary mode. Some fopen() calls may open files without the “b”
flag which means non-binary mode for Windows. As a result there may be
data corrupt when reading binary files such as eagleplayer plugins. Please
check that all fopen calls have the “b” flag set.

UADE 2 Client-server state diagram from client perspective.
Client implementations should comply with this diagram.

Send state

Check song end status

Check subsongs

Has nextsubsong
Not subjong end

'

Subsong change:
Send subsong change command

Song end:
Send reboot command.
Send command token.

' \
Receive state

(to discard pending
messages from uade)

Request song data:
Send read command.
Send command token

Not comnfand token
Got new message

Receive state
Check message type

Got new |message
4

Check message content

Protocol error

Print subsong info and
remember it.

Voluntary or involunsafy song end.
Depending on playg#policy and subsong

anged next time in the send
and a song can be changed by
‘ ' €xiting the playloop next time in the
)
N Print player name

Nothing

Figure 2: Play loop interaction from client (frontend) perspective

Check|sound data. This data is queueg
into the sound output.

10

